Issue 30, 2017

Gas-phase vibrational spectroscopy of triphenylamine: the effect of charge on structure and spectra

Abstract

The effect of ionization by oxidation and protonation on the structure and IR spectrum of isolated, gas-phase triphenylamine (TPA) has been investigated by infrared multiple photon dissociation (IRMPD) spectroscopy in the fingerprint range from 600 cm−1 to 1800 cm−1 using an infrared free electron laser. IR spectra calculated using density functional theory (DFT) convincingly reproduce the experimental data. Spectral and structural differences are identified among neutral TPA, TPA˙+ and protonated TPA and qualitatively related to effects of resonance delocalization. As a consequence of electron delocalization, computed structural parameters for TPA remain virtually unchanged upon removal of an electron. Nonetheless, CC and CN stretching vibrations in the IR spectra of TPA˙+ undergo a red shift of up to 52 cm−1 as compared to those in TPA. Since ionization also strongly influences the relative band intensities, a vibrational projection analysis was used to correlate vibrational modes of TPA with those of TPA˙+. The experimental IR spectrum of gas-phase protonated TPA indicates that protonation occurs on the nitrogen atom, despite delocalization of the lone electron pair. Upon protonation, the structure changes from the nearly planar geometry to a near-tetrahedral configuration.

Graphical abstract: Gas-phase vibrational spectroscopy of triphenylamine: the effect of charge on structure and spectra

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2017
Accepted
10 Jun 2017
First published
12 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 19881-19889

Gas-phase vibrational spectroscopy of triphenylamine: the effect of charge on structure and spectra

M. U. Munshi, G. Berden, J. Martens and J. Oomens, Phys. Chem. Chem. Phys., 2017, 19, 19881 DOI: 10.1039/C7CP02638B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements