Issue 29, 2017

Methanol oxidation on stoichiometric and oxygen-rich RuO2(110)

Abstract

We used temperature-programmed reaction spectroscopy (TPRS) to investigate the adsorption and oxidation of methanol on stoichiometric and O-rich RuO2(110) surfaces. We find that the complete oxidation of CH3OH is strongly preferred on stoichiometric RuO2(110) during TPRS for initial CH3OH coverages below ∼0.33 ML (monolayer), and that partial oxidation to mainly CH2O becomes increasingly favored with increasing CH3OH coverage from 0.33 to 1.0 ML. We present evidence that an adsorbed CH2O2 species serves as the key intermediate to complete oxidation and that CH2O2 formation is intrinsically facile but becomes limited by the availability of bridging O-atoms on stoichiometric RuO2(110) at initial CH3OH coverages above 0.33 ML. We show that methanol molecules adsorbed in excess of 0.33 ML dehydrogenate to mainly CH2O and desorb during TPRS, with adsorbed CH3O groups mediating the evolution of both CH2O and CH3OH. We find that O-rich RuO2(110) surfaces are also highly active toward methanol oxidation and that selectivity toward the complete oxidation of methanol increases markedly with increasing coverage of on-top O-atoms (Oot) on RuO2(110). Our results demonstrate that CH3OH species adsorbed within Oot-rich domains react efficiently during TPRS, in parallel with reaction of CH3OH adsorbed initially on cus-Ru sites. The data suggests that the facile hydrogenation of Oot atoms and the resulting desorption of H2O at low-temperature (<∼400 K) provides an efficient pathway for restoring reactive O-atoms and thereby promoting complete oxidation of methanol on the O-rich RuO2(110) surface.

Graphical abstract: Methanol oxidation on stoichiometric and oxygen-rich RuO2(110)

Article information

Article type
Paper
Submitted
11 May 2017
Accepted
01 Jul 2017
First published
03 Jul 2017

Phys. Chem. Chem. Phys., 2017,19, 18975-18987

Methanol oxidation on stoichiometric and oxygen-rich RuO2(110)

R. Rai and J. F. Weaver, Phys. Chem. Chem. Phys., 2017, 19, 18975 DOI: 10.1039/C7CP03143B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements