Issue 34, 2017

Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption

Abstract

Homogenously dispersed nanoparticles having a magnetic core and graphitic-carbon shells in amorphous carbon globules are prepared using a low-cost pyrolysis technique. Synergetic microwave absorption in carbon globules embedded with nanoscale iron/iron-carbide graphite (FeC) particles via dielectric, magnetic and Ohmic losses is emphasized in this work. The electromagnetic interference (EMI) shielding properties of the FeC nanoparticles dispersed in polyvinylidene fluoride (PVDF) are studied in the 8–18 GHz frequency range and compared with those of PVDF composites containing similar weight fractions of conducting/magnetic phase micro-particles such as carbonyl iron (CI) or electrolytic iron (EI) or a similar amount of amorphous carbon phase such as amorphous carbon (a-C) globules. The PVDF/FeC composite shows a maximum SET value of −23.9 dB at 18 GHz, as compared to the SET for the other composites. The enhanced EMI shielding in the PVDF/FeC composite is attributed to the increased interfaces of the nanoscale particles, which facilitate enhanced Maxwell–Wagner interfacial polarization. The homogenous dispersion of iron and iron-carbide phases in the carbon matrix of the FeC sample enhances the interfacial polarization and multiple internal scattering of the penetrated EM waves, which get synergistically attenuated by the Ohmic, magnetic and dielectric losses. Based on complex permittivity and permeability results we have calculated the Reflection Loss (RL) of the PVDF/FeC composite. The PVDF–FeC composite shows a RL peak of −40.5 dB for a 4.3 mm thick specimen positioned at 5 GHz frequency. The RL peak is explained using the quarter-wave cancellation model. Our work demonstrates that incorporating carbon globules containing nanoscale magnetic and conducting particles in a polymer matrix, provides an effective way to enhance EMI shielding via absorption of the EM wave in a lightweight thin composite coating.

Graphical abstract: Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2017
Accepted
10 Aug 2017
First published
10 Aug 2017

Phys. Chem. Chem. Phys., 2017,19, 23268-23279

Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption

R. Kumar, H. K. Choudhary, S. P. Pawar, S. Bose and B. Sahoo, Phys. Chem. Chem. Phys., 2017, 19, 23268 DOI: 10.1039/C7CP03175K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements