Issue 26, 2017

Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies

Abstract

The photophysics of ferricyanide in H2O, D2O and ethylene glycol was studied upon excitation of ligand-to-metal charge transfer (LMCT) transitions by combining ultrafast photoelectron spectroscopy (PES) of liquids and transient vibrational spectroscopy. Upon 400 nm excitation in water, the PES results show a prompt reduction of the Fe3+ to Fe2+ and a back electron transfer in ∼0.5 ps concomitant with the appearance and decay of a strongly broadened infrared absorption at ∼2065 cm−1. In ethylene glycol, the same IR absorption band decays in ∼1 ps, implying a strong dependence of the back electron transfer on the solvent. Thereafter, the ground state ferric species is left vibrationally hot with significant excitation of up to two quanta of the CN-stretch modes, which completely decay on a 10 ps time scale. Under 265 nm excitation even higher CN-stretch levels are populated. Finally, from a tiny residual transient IR signal, we deduce that less than 2% of the excited species undergo photoaquation, in line with early flash photolysis experiments. The latter is more significant at 265 nm compared to 400 nm excitation, which suggests photodissociation in this system is an unlikely statistical process related to the large excess of vibrational energy.

Graphical abstract: Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies

Supplementary files

Article information

Article type
Paper
Submitted
18 May 2017
Accepted
20 Jun 2017
First published
20 Jun 2017

Phys. Chem. Chem. Phys., 2017,19, 17052-17062

Charge-transfer and impulsive electronic-to-vibrational energy conversion in ferricyanide: ultrafast photoelectron and transient infrared studies

J. Ojeda, C. A. Arrell, L. Longetti, M. Chergui and J. Helbing, Phys. Chem. Chem. Phys., 2017, 19, 17052 DOI: 10.1039/C7CP03337K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements