Issue 34, 2017

Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation

Abstract

Zeolites and structurally related materials (zeotypes) have received considerable attention as potential adsorbents for selective carbon dioxide adsorption. Within this group, zeotypes with aluminophosphate composition (AlPOs) could be an interesting alternative to the more frequently studied aluminosilicate zeolites. So far, however, only a few AlPOs have been characterised experimentally in terms of their CO2 adsorption properties. In this study, force-field based grand-canonical Monte Carlo (GCMC) simulations were used to evaluate the potential of AlPOs for CO2/N2 separation, a binary mixture that constitutes a suitable model system for the removal of carbon dioxide from flue gases. A total of 51 frameworks were considered, all of which have been reported either as pure AlPOs or as heteroatom-containing AlPO derivatives. Prior to the GCMC simulations, all structures were optimised using dispersion-corrected density-functional theory calculations. The potential of these 51 systems for CO2/N2 separation was assessed in preliminary calculations (Henry constants and CO2 uptake at selected pressures). On the basis of these calculations, 21 AlPOs of particular interest were selected, for which 15 : 85 CO2/N2 mixture adsorption isotherms were calculated up to 10 bar. For adsorption-based separations using an adsorption pressure of 1 bar (vacuum-swing adsorption), AlPOs with GIS, ATN, ATT, and SIV topologies were predicted to be most attractive, as they combine high CO2/N2 selectivities (75 to 140) and reasonable CO2 working capacities (1 to 1.7 mmol g−1). Under pressure-swing adsorption conditions, there is a tradeoff between selectivity and working capacity: while highly selective AlPOs like GIS reach only moderate working capacities, the frameworks with the highest working capacities above 2 mmol g−1, AFY, KFI, and SAV, have lower selectivities between 25 and 35. To gain atomic-level insights into the host–guest interactions, interaction energy maps were computed for selected AlPOs. The computational assessment presented here can guide future experimental efforts in the development and optimisation of AlPO-based adsorbents for selective CO2 adsorption.

Graphical abstract: Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation

Supplementary files

Article information

Article type
Paper
Submitted
08 Jun 2017
Accepted
04 Aug 2017
First published
07 Aug 2017

Phys. Chem. Chem. Phys., 2017,19, 22801-22812

Computational evaluation of aluminophosphate zeotypes for CO2/N2 separation

M. Fischer, Phys. Chem. Chem. Phys., 2017, 19, 22801 DOI: 10.1039/C7CP03841K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements