Issue 39, 2017

Hydrogen assisted synthesis of branched nickel nanostructures: a combined theoretical and experimental study

Abstract

The selective adsorption of small molecules over specific facets plays an important role in morphology controlled synthesis of metal nanocrystals. In the present work, hydrogen is found to be a good capping agent for direct synthesis of branched nickel nanocrystals, i.e., secondary branching (Ni-SB) nanoparticles and multipods (Ni-MP). Using ab initio thermodynamics and the Wulff construction principle, it has been found that: (i) in the presence of hydrogen (PH2 = 6 bar), the facet structure stability follows the order of Ni(100) > Ni(111) > Ni(110), resulting in competitive over-growth along the 〈111〉 and 〈110〉 directions; (ii) with increasing hydrogen pressure, the Ni deposition rate over the crystal surface increases as a result of more Ni2+ reduction; the competition between deposition and surface diffusion, therefore, becomes the vital factor for the nanocrystal growth process; (iii) the diffusion energy barrier of a surface Ni atom on Ni(111) is lower than that on Ni(110), especially on hydrogen covered surfaces, indicating that the kinetic over-growth only along the 〈111〉 direction producing Ni-MP will be dominant under PH2 = 14 bar; (iv) the ab initio based Wulff construction principle predicts the shapes and morphologies at different hydrogen pressures which is further confirmed with HRTEM results. Finally, compared with nickel nanoparticles (Ni-NP) synthesized in the absence of hydrogen, the hydrogen assisted branched Ni nanomaterials, especially the Ni-MP, show higher catalytic activities for hydrogenation reactions of acetophenone and nitrobenzene.

Graphical abstract: Hydrogen assisted synthesis of branched nickel nanostructures: a combined theoretical and experimental study

Supplementary files

Article information

Article type
Paper
Submitted
11 Jul 2017
Accepted
07 Sep 2017
First published
08 Sep 2017

Phys. Chem. Chem. Phys., 2017,19, 26718-26727

Hydrogen assisted synthesis of branched nickel nanostructures: a combined theoretical and experimental study

X. Liang, N. Liu, H. Qiu, C. Zhang, D. Mei and B. Chen, Phys. Chem. Chem. Phys., 2017, 19, 26718 DOI: 10.1039/C7CP04673A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements