Issue 11, 2017

CO2 activation on Cu-based Zr-decorated nanoparticles

Abstract

Density functional theory (DFT) calculations have been applied to investigate the electronic and CO2 adsorption properties of 55-atom Cu-based nanoparticles (NPs) decorated with Zr atoms (Cu55−xZrx, x = 0–12). Our results revealed that the Zr atoms preferably reside on the surface of the Cu NPs generating sites that chemisorb and activate CO2 (linear to bent geometry and elongation of C[double bond, length as m-dash]O bonds). Importantly, we demonstrate that while the CO2 formation of the activated state on the Cu NPs is endothermic, it becomes barrierless and exothermic on the Zr-decorated NPs. The CO2 activation and chemisorption was attributed to charge transferred from the NPs to the CO2 molecule. We identified the local-site d-band center and, interestingly, the ionization potential of the NP as descriptors correlating with the CO2 chemisorption. As a result, we demonstrate that one can tune the ionization potential of the NPs and, in turn the CO2 chemisorption energy, by varying the Zr content of the NPs. Additionally, we investigated the activity of CuZr NPs as catalysts for CO2 dissociation to CO and determined that Cu54Zr was a very efficient catalyst compared to Cu55. Overall, this work highlights how surface decoration can change the electronic properties of the NPs and result in CO2 activation, which are important steps for designing catalysts that capture and convert CO2 to fuels and chemicals.

Graphical abstract: CO2 activation on Cu-based Zr-decorated nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
16 Dec 2016
Accepted
27 Apr 2017
First published
28 Apr 2017

Catal. Sci. Technol., 2017,7, 2245-2251

CO2 activation on Cu-based Zr-decorated nanoparticles

N. Austin, J. Ye and G. Mpourmpakis, Catal. Sci. Technol., 2017, 7, 2245 DOI: 10.1039/C6CY02628A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements