Production of liquid fuel intermediates from furfural via aldol condensation over Lewis acid zeolite catalysts†
Abstract
Aldol condensation reactions between furfural and acetone can be used to produce liquid fuel intermediates. It was found that tin-containing zeolites with MFI (Sn-MFI) and BEA* (Sn-Beta) framework structures are effective for C–C bond formation via the aldol condensation reactions between furfural and acetone. Aldol condensation between furfural and acetone produced two main products, 4-(2-furyl)-3-buten-2-one (FAc) and 1,5-di-2-furanyl-1,4-pentadien-3-one (F2Ac). Although both these catalysts were active for the aldol condensation reactions, different selectivities to aldol products were observed over Sn-MFI and Sn-Beta. FAc and F2Ac were formed over the Sn-Beta catalyst with selectivities to FAc of 40% and F2Ac of 22%, respectively. In contrast, only FAc was produced over Sn-MFI. The variation in selectivity is likely due to different pore geometries of Sn-Beta and Sn-MFI, suggesting that Sn-MFI exhibits shape selectivity for aldol condensation between furfural and acetone. In addition, it was found that the addition of water to the reaction system can also affect the product selectivity, leading to the aldol product exclusively being FAc over Sn-Beta.