W-doped MoS2 nanosheets as a highly-efficient catalyst for hydrogen peroxide electroreduction in alkaline media
Abstract
Novel W-doped MoS2 electrocatalysts have been successfully fabricated through a facile one-pot solvothermal method and employed for the hydrogen peroxide reduction reaction (HPRR) in emerging alkaline H2O2-based fuel cells. The wide composition stoichiometry of W-doped MoS2 is obtained in molar fractions of 30% and 15%. It has been found that 30% W-doped MoS2 presents superior catalytic activity with a high peak current density of 2.83 mA cm−2 at −0.86 V vs. Hg/HgO, owing to the heteroatom doping and the defect sites that emerged in the nanostructure. Furthermore, the influence of alkali concentration, H2O2 concentration and temperature on the HPRR is systematically investigated. The mechanism of HPRR is illustrated using a rotating disk electrode as a direct two-electron electroreduction pathway. Thereby, a new insight into heteroatom doping in transition metal dichalcogenides for HPRR applications is provided.