Issue 2, 2017

Tuning the iron redox state inside a microporous porphyrinic metal organic framework

Abstract

Two new 3D porphyrin-based metal organic frameworks were obtained by solvothermally reacting iron(III) chloride, a free base (5,10,15,20-tetrakis[4-(2,3,4,5-tetrazolyl)phenyl]porphyrin) (H2TTPP) and either pyrazine or 1,4-diazabicyclo[2.2.2]octane (DABCO). Both MOFs displayed a 3-D open framework of the fry topology, where the inorganic building unit is a chain of corner-sharing FeN4O2 octahedra and the porphyrinic linker is metallated with iron during the reaction course, with the N-donor base bridging the iron of the porphyrinic cores. Through thorough structural and spectroscopic analyses of the pyrazine containing material the chemical formula [FeIIpzTTP(FeII1−xDMF1−xFeIIIxOHx)]n was inferred (x ≥ 0.25). Whereas the already reported carboxylate analogue is built up from a pure iron(III) inorganic chain, here spectroscopic and structural studies evidenced a mixed valence iron(II/III) state, evidencing that, in agreement with the HSAB theory, the substitution of a carboxylate function by a tetrazolate one allows redox tuning. Finally, both materials feature one-dimensional channels of ca. 8 × 12 Å within the structures with permanent microporosity.

Graphical abstract: Tuning the iron redox state inside a microporous porphyrinic metal organic framework

Supplementary files

Article information

Article type
Paper
Submitted
03 Nov 2016
Accepted
07 Dec 2016
First published
07 Dec 2016

Dalton Trans., 2017,46, 517-523

Tuning the iron redox state inside a microporous porphyrinic metal organic framework

B. Abeykoon, J. Grenèche, E. Jeanneau, D. Chernyshov, C. Goutaudier, A. Demessence, T. Devic and A. Fateeva, Dalton Trans., 2017, 46, 517 DOI: 10.1039/C6DT04208B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements