Issue 28, 2017

The fabrication and application of magnetite coated N-doped carbon microtubes hybrid nanomaterials with sandwich structures

Abstract

In this work, N-doped carbon microtubes have been synthesized using MoO3 microrods as the sacrificial template. Then, the Fe3O4 nanoparticles were integrated into N-doped carbon microtubes to obtain triple-walled Fe3O4@N-doped carbon@Fe3O4 microtubes via a high temperature decomposition process. Due to the coordination ability of nitrogen and the unique structures of the N-doped carbon microtubes, the Fe3O4 nanoparticles were closely attached to both the external and internal surfaces of the N-doped carbon microtubes and thus, assured a relatively good response to an external magnetic field. All these features make the nanocomposites well fitted for adsorption, catalysis, energy storage etc. Moreover, the N-doped carbon microtubes can be used as versatile templates to synthesize other triple-walled composites M@N-doped carbon@M microtubes (such as M = Cu(Cu2O), MnO2, MoS2), which greatly widens the applications of N-doped carbon microtubes.

Graphical abstract: The fabrication and application of magnetite coated N-doped carbon microtubes hybrid nanomaterials with sandwich structures

Supplementary files

Article information

Article type
Paper
Submitted
31 Mar 2017
Accepted
16 Jun 2017
First published
16 Jun 2017

Dalton Trans., 2017,46, 9172-9179

The fabrication and application of magnetite coated N-doped carbon microtubes hybrid nanomaterials with sandwich structures

M. Zhang, L. Chen, J. Zheng, W. Li, T. Hayat, N. S. Alharbi, W. Gan and J. Xu, Dalton Trans., 2017, 46, 9172 DOI: 10.1039/C7DT01155E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements