Issue 28, 2017

Synthesis and characterization of two layered aluminophosphates [R-C8H12N]8[H2O]2·[Al8P12O48H4] and [S-C8H12N]8[H2O]2·[Al8P12O48H4] with a mirror symmetric feature and their proton conductivity

Abstract

The template effect of chiral organic molecules to aluminophosphate open frameworks was investigated by the syntheses of two layered structures, [R-C8H12N]8[H2O]2·[Al8P12O48H4] and [S-C8H12N]8[H2O]2·[Al8P12O48H4] (denoted as AlPO-CJ72-R and -S), with a mirror symmetric feature. The two structures are obtained separately, which is the first instance in inorganic open-framework materials to our knowledge, by α-methylbenzylamine with homochirality. Single-crystal X-ray diffraction analysis reveals that the structure of either AlPO-CJ72-R or AlPO-CJ72-S crystallizes in the chiral triclinic space group P1, and the existence of AAAA-stacked Al2P3O123− layers made up of alternating AlO4 and PO3([double bond, length as m-dash]O) or PO2([double bond, length as m-dash]O)(OH) tetrahedra to form a 4 × 6 network. Their structures show self-assembled chiral H-bond chains, the chiralities of which are transferred to adjacent helical T–O (T = Al and P) chains. The frameworks are mirror symmetric to each other. The performance of AlPO-CJ72 regarding proton conductivity was tested. It shows an excellent result up to 3.01 × 10−3 S cm−1 (363 K, 98% RH), which might be attributed to the H-bond chains in the structure.

Graphical abstract: Synthesis and characterization of two layered aluminophosphates [R-C8H12N]8[H2O]2·[Al8P12O48H4] and [S-C8H12N]8[H2O]2·[Al8P12O48H4] with a mirror symmetric feature and their proton conductivity

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2017
Accepted
13 Jun 2017
First published
13 Jun 2017

Dalton Trans., 2017,46, 9157-9162

Synthesis and characterization of two layered aluminophosphates [R-C8H12N]8[H2O]2·[Al8P12O48H4] and [S-C8H12N]8[H2O]2·[Al8P12O48H4] with a mirror symmetric feature and their proton conductivity

Y. Yu, J. Zhu, J. Liu, Y. Yan and X. Song, Dalton Trans., 2017, 46, 9157 DOI: 10.1039/C7DT01643C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements