Issue 29, 2017

Triaminoborane-bridged diphosphine complexes with Ni and Pd: coordination chemistry, structures, and ligand-centered reactivity

Abstract

The synthesis, coordination chemistry, and reactivity of two diphosphines containing the cyclic triaminoborane 1,8,10,9-triazaboradecalin (TBD) are described. To evaluate the ligand-centered reactivity of PhTBDPhos and iPrTBDPhos, the complexes (PhTBDPhos)MCl2 and (iPrTBDPhos)MCl2, where M = Ni and Pd, were prepared and characterized by elemental analysis, multinuclear NMR spectroscopy (1H, 13C, 31P, and 11B), and single-crystal X-ray diffraction (XRD). Despite very low boron Lewis acidity in the TBD backbone, (PhTBDPhos)NiCl2 (1) and (PhTBDPhos)PdCl2 (3) react with H2O, alcohols, and hydrated fluoride reagents in the presence of NEt3 to yield trans H–O or H–F addition across the bridgehead N–B bond. In contrast, iPrTBDPhos shows no appreciable reactivity when bound to NiCl2 (2) and PdCl2 (4), which is attributed to the sterically-bulky isopropyl substituents blocking substrate access to boron in the TBD backbone. The new complexes {[(PhTBDPhos-H2O)Ni]2(μ-OH)2}Cl2 (5), {[(PhTBDPhos-H2O)Pd]2(μ-OH)2}Cl2 (6), (PhTBDPhos-MeOH)NiCl2 (7), (PhTBDPhos-MeOH)PdCl2 (8), (PhTBDPhos-C3H5OH)PdCl2 (9), and {[(PhTBDPhos-HF)Ni]2(μ-OH)2}Cl2 (10) were isolated, and all but 6 were structurally characterized by single-crystal XRD. Multinuclear NMR studies revealed that isolated, crystallographically-authenticated samples of 5–9 lose ligand-bound water or alcohol with reappearance of starting materials 1 and 3 when dissolved in NMR solvents. Addition of NEt3 attenuated the water and alcohol loss from 5–9 to allow 1H, 13C, 31P, and 11B NMR data to be collected for all the compounds, confirming the determined structures. Additional reactivity experiments with NaOMe and fluoride reagents suggested that participation of the bridgehead nitrogen in the TBD backbone is important for promoting reactivity at boron when PhTBDPhos is bound to Ni and Pd. The term “cooperative ligand-centered reactivity” (CLR) is proposed to define chemical reactions that appear to require participation of more than one atom on the ligand, such as those reported here.

Graphical abstract: Triaminoborane-bridged diphosphine complexes with Ni and Pd: coordination chemistry, structures, and ligand-centered reactivity

Supplementary files

Article information

Article type
Paper
Submitted
12 Jun 2017
Accepted
30 Jun 2017
First published
11 Jul 2017

Dalton Trans., 2017,46, 9394-9406

Triaminoborane-bridged diphosphine complexes with Ni and Pd: coordination chemistry, structures, and ligand-centered reactivity

K. Lee, C. M. Donahue and S. R. Daly, Dalton Trans., 2017, 46, 9394 DOI: 10.1039/C7DT02144E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements