Issue 38, 2017

Fluorite-type coordination compound as iodide ion conductor: crystal structure and ionic conductivity

Abstract

The solid state electrolytes show a wide range of practical applications in a variety of all-solid-state electrochemical devices, and it is highly in demand to explore new types of solid state electrolyte materials. In this study, we have designed and prepared a fluorite-type coordination compound, [Mn(en)3]I2, which has been characterized by microanalysis for C, H and N elements, infrared spectrum in the wavenumber range of 4000–400 cm−1, thermogravimetric analysis and differential scanning calorimetry. The single crystal X-ray diffraction revealed that the bigger size [Mn(en)3]2+ cations build three-dimensional network in the crystal of [Mn(en)3]I2 and the smaller size iodide ions occupy the tetrahedral or octahedral cavities surrounded by the [Mn(en)3]2+ cations, featuring as the fluorite-type compound. The impedance spectra were investigated to reveal the ionic conductivity σ = 3.45 × 10−11 S cm−1 at 303 K, while σ = 1.37 × 10−6 S cm−1 at 423 K, sharply increasing by five orders of magnitude regarding to that at 303 K. The electric modulus analysis further confirmed the conductance contributed from the migration of iodide ions. This study opens a way to design and achieve new coordination compound-based ion conductors.

Graphical abstract: Fluorite-type coordination compound as iodide ion conductor: crystal structure and ionic conductivity

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2017
Accepted
05 Sep 2017
First published
05 Sep 2017

Dalton Trans., 2017,46, 12916-12922

Fluorite-type coordination compound as iodide ion conductor: crystal structure and ionic conductivity

X. Chen, C. Xue, S. Liu, J. Liu, Z. Yao and X. Ren, Dalton Trans., 2017, 46, 12916 DOI: 10.1039/C7DT02458D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements