Low-temperature-flux syntheses of ultraviolet-transparent borophosphates Na4MB2P3O13 (M = Rb, Cs) exhibiting a second-harmonic generation response†
Abstract
The first non-centrosymmetric mixed-alkali-metal borophosphates, Na4MB2P3O13 (M = Rb 1, Cs 2), were obtained using a low-temperature flux method. Single-crystal X-ray diffraction studies of 1 and 2 reveal that the two compounds are isostructural, both crystallizing in the orthorhombic space group Pna21; their structures consist of novel 1D borophosphate chains constructed from B2P3O14 fundamental building units, assembled into a 3D framework by alkali metal cations. Second-harmonic generation (SHG) measurements show that 1 and 2 are type-I phase-matchable, with SHG responses ca. 0.35 and 0.42 times that of KH2PO4, respectively. The cut-off edges of 1 and 2 are ca. 276 and 267 nm, respectively, which suggests that they are potential ultraviolet nonlinear optical materials. Density functional theory calculations were employed to shed light on the band structure and density of states as well as the electron density distribution.
- This article is part of the themed collection: Dalton Transactions Inorganic Symposia