Issue 44, 2017

Confined methanol within InOF-1: CO2 capture enhancement

Abstract

The CO2 capture performance of InOF-1 was optimised by confining small amounts of MeOH within its micropores (MeOH@InOF-1). In comparison with fully activated InOF-1, MeOH@InOF-1 shows a 1.30 and 4.88-fold increase in CO2 capture capacity for kinetic and static isothermal CO2 adsorption experiments respectively. Density functional theory calculations coupled with forcefield based-Monte Carlo simulations revealed that such an enhancement is assigned to an increase of the degree of confinement felt by the CO2 molecules resulting from the formation of a lump at the vicinity of the μ2-OH groups since MeOH strongly interacts with these adsorption sites and is thus highly localized in this region.

Graphical abstract: Confined methanol within InOF-1: CO2 capture enhancement

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2017
Accepted
14 Aug 2017
First published
15 Aug 2017

Dalton Trans., 2017,46, 15208-15215

Confined methanol within InOF-1: CO2 capture enhancement

E. Sánchez-González, P. G. M. Mileo, J. R. Álvarez, E. González-Zamora, G. Maurin and I. A. Ibarra, Dalton Trans., 2017, 46, 15208 DOI: 10.1039/C7DT02709E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements