Issue 44, 2017

Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen)2(TAPHAT)]2+ and [Ru(phen)2(TAPHAT)Ru(phen)2]4+

Abstract

The photophysical, photochemical and electrochemical properties of two newly synthesized ruthenium complexes, [Ru(phen)2(TAPHAT)]2+ and [Ru(phen)2(TAPHAT)Ru(phen)2]4+, are reported. We have developed a novel synthetic methodology that involves the metal-free oxidative coupling of diamino compounds to form a desired “pyrazine-type” core. This methodology is employed both on the free diamino ligand as well as on the different ruthenium complexes, therefore illustrating the applicability of this reaction. The TAPHAT ligand, which possesses 7 aromatic rings and 10 nitrogen atoms for 20 carbon atoms, gives rise to ruthenium complexes that can undergo up to three consecutive reductions centered on said ligand, a critical parameter for electron storage applications. A temperature-dependent study has confirmed the presence of a 4th MLCT state. Excited-state quenching in the presence of guanine or hydroquinone allows to foresee biomedical applications.

Graphical abstract: Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen)2(TAPHAT)]2+ and [Ru(phen)2(TAPHAT)Ru(phen)2]4+

Supplementary files

Article information

Article type
Paper
Submitted
31 Aug 2017
Accepted
28 Sep 2017
First published
29 Sep 2017

Dalton Trans., 2017,46, 15287-15300

Two ruthenium complexes capable of storing multiple electrons on a single ligand – photophysical, photochemical and electrochemical properties of [Ru(phen)2(TAPHAT)]2+ and [Ru(phen)2(TAPHAT)Ru(phen)2]4+

L. Troian-Gautier, L. Marcélis, J. De Winter, P. Gerbaux and C. Moucheron, Dalton Trans., 2017, 46, 15287 DOI: 10.1039/C7DT03232C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements