Issue 6, 2017

Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation

Abstract

Conventional solar cells absorb photons with energy above the bandgap of the active layer while sub-bandgap photons are unharvested. One way to overcome this loss is to capture the low energy light in the triplet state of a molecule capable of undergoing triplet–triplet annihilation (TTA), which pools the energy of two triplet states into one high energy singlet state that can then be utilized. This mechanism underlies the function of an organic intermediate band solar cell (IBSC). Here, we report a solid-state organic IBSC that shows enhanced photocurrent derived from TTA that converts sub-bandgap light into charge carriers. Femtosecond resolution transient absorption spectroscopy and delayed fluorescence spectroscopy provide evidence for the triplet sensitization and upconversion mechanisms, while external quantum efficiency measurements in the presence of a broadband background light demonstrate that sub-bandgap performance enhancements are achievable in this device. The solid-state architecture introduced in this work serves as an alternative to previously demonstrated solution-based IBSCs, and is a compelling model for future research efforts in this area.

Graphical abstract: Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation

Supplementary files

Article information

Article type
Paper
Submitted
20 Dec 2016
Accepted
05 May 2017
First published
05 May 2017

Energy Environ. Sci., 2017,10, 1465-1475

Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation

Y. L. Lin, M. Koch, A. N. Brigeman, D. M. E. Freeman, L. Zhao, H. Bronstein, N. C. Giebink, G. D. Scholes and B. P. Rand, Energy Environ. Sci., 2017, 10, 1465 DOI: 10.1039/C6EE03702J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements