Issue 5, 2017

A synthetic biology approach to engineering living photovoltaics

Abstract

The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane–electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6–10% without accounting for additional bioengineering optimizations for light-harvesting.

Graphical abstract: A synthetic biology approach to engineering living photovoltaics

Article information

Article type
Perspective
Submitted
28 Jan 2017
Accepted
04 Apr 2017
First published
04 Apr 2017

Energy Environ. Sci., 2017,10, 1102-1115

A synthetic biology approach to engineering living photovoltaics

N. Schuergers, C. Werlang, C. M. Ajo-Franklin and A. A. Boghossian, Energy Environ. Sci., 2017, 10, 1102 DOI: 10.1039/C7EE00282C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements