Issue 10, 2017

Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells

Abstract

Successful commercialization of perovskite solar cells (PSCs) in the near future will require the fabrication of cells with high efficiency and long-term stability. Despite their good processability at low temperatures, the majority of organic conductors employed in the fabrication of high-efficiency PSCs [e.g., 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) and poly(triaryl amine) (PTAA)] have low thermal stability. In order to fabricate PSCs with excellent thermal stability, both the constituent material itself and the interface between the constituents must be thermally stable. In this work, we focused on copper phthalocyanine (CuPC) as a model hole-transporting material (HTM) for thermally stable PSCs since CuPC is known to possess excellent thermal stability and interfacial bonding properties. The CuPC-based PSCs recorded a high power conversion efficiency (PCE) of ∼18% and maintained 97% of their initial efficiency for more than 1000 h of thermal annealing at 85 °C. Moreover, the device was stable under thermal cycling tests (50 cycles, −45 to 85 °C). The high PCE and high thermal stability observed in the CuPC-PSCs were found to arise as a result of the strong interfacial and conformal coating present on the surface of the perovskite facets, located between CuPC and the perovskite layer. These results will provide an important future direction for the development of highly efficient and thermally stable PSCs.

Graphical abstract: Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells

Supplementary files

Article information

Article type
Communication
Submitted
12 Jul 2017
Accepted
14 Sep 2017
First published
14 Sep 2017

Energy Environ. Sci., 2017,10, 2109-2116

Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells

Y. C. Kim, T.-Y. Yang, N. J. Jeon, J. Im, S. Jang, T. J. Shin, H.-W. Shin, S. Kim, E. Lee, S. Kim, J. H. Noh, S. I. Seok and J. Seo, Energy Environ. Sci., 2017, 10, 2109 DOI: 10.1039/C7EE01931A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements