Issue 12, 2017

A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte

Abstract

We report on a particularly stable 3 V all-solid-state sodium–ion battery built using a closo-borate based electrolyte, namely Na2(B12H12)0.5(B10H10)0.5. Battery performance is enhanced through the creation of an intimate cathode–electrolyte interface resulting in reversible and stable cycling with a capacity of 85 mA h g−1 at C/20 and 80 mA h g−1 at C/5 with more than 90% capacity retention after 20 cycles at C/20 and 85% after 250 cycles at C/5. We also discuss the effect of cycling outside the electrochemical stability window and show that electrolyte decomposition leads to faster though not critical capacity fading. Our results demonstrate that owing to their high stability and conductivity closo-borate based electrolytes could play a significant role in the development of a competitive all-solid-state sodium–ion battery technology.

Graphical abstract: A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte

Article information

Article type
Paper
Submitted
23 Aug 2017
Accepted
17 Nov 2017
First published
17 Nov 2017

Energy Environ. Sci., 2017,10, 2609-2615

A stable 3 V all-solid-state sodium–ion battery based on a closo-borate electrolyte

L. Duchêne, R.-S. Kühnel, E. Stilp, E. Cuervo Reyes, A. Remhof, H. Hagemann and C. Battaglia, Energy Environ. Sci., 2017, 10, 2609 DOI: 10.1039/C7EE02420G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements