Issue 3, 2017

Formation of bioactive transformation products during glucocorticoid chlorination

Abstract

Glucocorticoid (GC) release into the environment has led to widespread detection of glucocorticoid receptor (GR) activity in water resources that has been shown to persist throughout conventional and some advanced wastewater treatment processes. Here, we used high performance liquid chromatography, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy to explore the reaction of natural (cortisone, cortisol) and synthetic (prednisone, prednisolone, dexamethasone) GCs with free chlorine (HOCl) to simulate their fate during chemical disinfection of water and wastewater. Generally, GCs react slowly (t1/2 ∼ 7–200 h) with HOCl when compared to other steroid classes, but they yield complex mixtures of transformation products, with at times the majority of product mass comprising structurally identifiable and likely bioactive steroids. For example, we frequently observed chlorination at the C-9 position (e.g., 9-chloro-prednisone), a reaction known to increase GC activity 4-fold. We also identified reaction products in the adrenosterone family of androgens produced via cleavage of the C-17 side-chain on many GCs. Another common transformation pathway was the conversion of endogenous GCs to their more potent synthetic analogs via oxidation at the C-1/C-2 positions, with unsaturation reported to increase GR activity 4-fold (e.g., cortisol to prednisolone). Despite identification of such products, in vitro assays generally suggest GR activity decreases with extent of parent decay during chlorination. Cortisol was the exception, with GR activity only decreasing 2-fold in product mixtures (based on measured EC50 values) despite a 95% reduction in parent concentration, a result attributable to formation of the more potent prednisolone during chlorination. Furthermore, our assay likely underestimates product bioactivity as it did not account for the activity of several identified GC byproducts that first require in vivo activation via C-11 reduction, nor did it consider androgen receptor (AR) activity associated with byproducts from the adrenosterone family. To avoid formation of product mixtures with conserved bioactivity, advanced chemical oxidation processes may represent a more promising approach; we show that GCs react much more rapidly with ozone (t1/2 ∼ 0.4–1.3 min) and produce no observable UV-active products. This suggests disruption of the GC conjugated π-electron and ring systems, thereby likely mitigating biological activity.

Graphical abstract: Formation of bioactive transformation products during glucocorticoid chlorination

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2017
Accepted
28 Feb 2017
First published
03 Mar 2017

Environ. Sci.: Water Res. Technol., 2017,3, 450-461

Formation of bioactive transformation products during glucocorticoid chlorination

N. C. Pflug, A. Kupsco, E. P. Kolodziej, D. Schlenk, L. M. Teesch, J. B. Gloer and D. M. Cwiertny, Environ. Sci.: Water Res. Technol., 2017, 3, 450 DOI: 10.1039/C7EW00033B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements