Issue 12, 2017

Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice

Abstract

The objective of the present study is to investigate the hepatic steatosis relieving effect of Averrhoa carambola free phenolic extract (ACF) on leptin receptor-deficient (db/db) mice and elucidate the modulation hepatic lipogenesis mechanisms. The serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) assays, accompanying hematoxylin and eosin (H&E) staining, were applied to identify the alleviation of liver histopathological changes. Serum and hepatic lipid assays, combined with oil red O staining, were used to investigate the amelioration of lipid accumulation. Further assessments by quantitative real-time PCR and western blot assays were used to elucidate the suppression of the fatty acid and triglyceride (TG) synthesis mechanisms underlying ACF protection. These results indicated that ACF treatment significantly reduced the liver TG of db/db mice (p < 0.05). The mechanisms are partly through phosphorylation of AMPK α and down-regulation of SREBP-1c expression, and further down-regulation of FAS and SCD1 (p < 0.05). In addition, the expression levels of mircoRNA-34a and mircoRNA-33, which modulate this signaling pathway, were significantly down-regulated by ACF treatment (p < 0.05). Collectively, these results revealed that ACF exhibited a potent hepatic steatosis relieving effect partly by inhibiting the signal transduction of hepatic lipogenesis.

Graphical abstract: Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice

Article information

Article type
Paper
Submitted
08 Jun 2017
Accepted
02 Oct 2017
First published
11 Oct 2017

Food Funct., 2017,8, 4496-4507

Averrhoa carambola free phenolic extract ameliorates nonalcoholic hepatic steatosis by modulating mircoRNA-34a, mircoRNA-33 and AMPK pathways in leptin receptor-deficient db/db mice

D. Pang, L. You, L. Zhou, T. Li, B. Zheng and R. H. Liu, Food Funct., 2017, 8, 4496 DOI: 10.1039/C7FO00833C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements