Issue 9, 2017

Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS

Abstract

Dioscorea opposita Thunb, commonly known as “yam” that has a long dietary therapy history for diabetes, is widely consumed as a botanical dietary supplement and widely cultivated in China. In this work, a method for rapid screening of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract was developed using α-glucosidase functionalized magnetic nanoparticles (αG-MNPs) as a solid phase extraction absorbent in combination with high performance liquid chromatography-mass spectrometry (HPLC-MS). Two α-glucosidase inhibitors were selectively extracted and identified as batatasin I and 2,4-dimethoxy-6,7-dihydroxyphenanthrene. Their α-glucosidase inhibitory activities (IC50 = 2.55 mM and 0.40 mM, respectively) were significantly higher than that of acarbose (as control). Taking advantage of the specificity in enzyme binding and the convenience of magnetic separation, this method has great potential for rapid and fast screening of α-glucosidase inhibitors from complex natural resources.

Graphical abstract: Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS

Article information

Article type
Paper
Submitted
23 Jun 2017
Accepted
25 Jul 2017
First published
26 Jul 2017

Food Funct., 2017,8, 3219-3227

Rapid identification of α-glucosidase inhibitors from Dioscorea opposita Thunb peel extract by enzyme functionalized Fe3O4 magnetic nanoparticles coupled with HPLC-MS/MS

S. Zhang, D. Wu, H. Li, J. Zhu, W. Hu, M. Lu and X. Liu, Food Funct., 2017, 8, 3219 DOI: 10.1039/C7FO00928C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements