Issue 12, 2017

A potential strategy for counteracting age-related sarcopenia: preliminary evidence of combined exercise training and leucine supplementation

Abstract

Previous research has demonstrated the positive effects of concurrent/combined aerobic and resistance exercise or leucine supplementation on skeletal muscle protein synthesis (MPS) and hypertrophy in aging organisms. However, the effects of a multimodal intervention which combines both aerobic and resistance exercise and leucine supplementation has not been fully elucidated. Eighteen month old and 2 month old C57BL/6 mice were assigned to aging control (AC, n = 8), aging and multimodal intervention (AMI, n = 8) and young control (YC, n = 8). Mice in the YC and AC groups were fed an alanine-rich diet (3.4%), and mice in the AMI group received an isonitrogenous leucine-supplemented (5%) diet in combination with combined aerobic (30 minutes swimming) and resistance exercise training (incremental jumping submersed in water with overload corresponding to 40%–50% body weight) for a total of 4 weeks. The gastrocnemius muscles were dissected for western blotting detection (signaling proteins involved in MPS) and the ex vivo determination of protein synthesis and protein content. The muscle strength of the hind limbs was measured pre-experiment and repeated once per week on Sunday for 4 weeks. Mice in the AC and AMI groups showed lower ex vivo protein synthesis, protein content, expression of signaling proteins involved in MPS, maximal grip strength but higher plasma cortisol compared with the YC group post intervention. When compared to AC mice, the multimodal treatment led to lower activity of Sestrin2, higher expression of PI3K III and the phosphorylation of mTOR, p70S6K and 4E-BP1, as well as higher plasma leucine, wet gastrocnemius muscle weight and muscle weight to body weight ratio. Furthermore, the multimodal intervention induced more pronounced anabolic response such as higher ex vivo protein synthesis rate, total protein content, and myofibrillar fractions in gastrocnemius muscle, and greater maximum grip strength. The present research shows that a multimodal intervention including combined both aerobic and resistance exercise training and 5% leucine supplementation has the potential to maintain skeletal muscle protein synthesis and attenuate losses in muscular strength during the aging process.

Graphical abstract: A potential strategy for counteracting age-related sarcopenia: preliminary evidence of combined exercise training and leucine supplementation

Article information

Article type
Paper
Submitted
01 Aug 2017
Accepted
11 Oct 2017
First published
12 Oct 2017

Food Funct., 2017,8, 4528-4538

A potential strategy for counteracting age-related sarcopenia: preliminary evidence of combined exercise training and leucine supplementation

Z. Xia, J. M. Cholewa, Y. Zhao, Y. Yang, H. Shang, H. Jiang, Q. Su and N. E. Zanchi, Food Funct., 2017, 8, 4528 DOI: 10.1039/C7FO01181D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements