Unique nanocages of 12CaO·7Al2O3 boost heterolytic hydrogen activation and selective hydrogenation of heteroarenes over ruthenium catalyst†
Abstract
The chemoselective hydrogenation of heteroarenes is one of the most important synthetic reactions for the production of key intermediates in agrochemicals, pharmaceuticals and various fine chemicals. The development of new heterogeneous catalysts for the environmentally benign synthesis of heterocycle hydrogenated products is a fundamental objective for chemists. Here, we report that 12CaO·7Al2O3 with a unique sub-nanocage structure loaded with Ru nanoparticles exhibits higher activity, chemoselectivity and sustainability for the hydrogenation of heteroarenes in a solvent-free system than traditional oxide-supported metal catalysts. Conversion of >99% and a selectivity close to 99% were achieved for the hydrogenation of quinoline under mild conditions. This catalyst was also successfully applied to the hydrogenation of a variety of N- and O-heteroarenes with high yields. The superior catalytic performance can be attributed to a cooperative effect between the hydrogen-storage ability and large amount of strong basic sites on the surface of the support, which promotes heterolytic H2 cleavage and prevents poisoning of the metal surface caused by the adsorption of heteroarenes.