Issue 16, 2017

A straightforward one-pot synthesis of bioactive N-aryl oxazolidin-2-ones via a highly efficient Fe3O4@SiO2-supported acetate-based butylimidazolium ionic liquid nanocatalyst under metal- and solvent-free conditions

Abstract

In the present study, we report the fabrication and characterization of novel acetate-based butylimidazolium ionic liquid immobilized silica-coated magnetic nanoparticles (IL-OAc@FSMNP). The synthesized nanocomposite proves its supremacy as an environmentally benign catalyst in the reaction of aniline and its derivatives with ethylene carbonate to form bioactive N-aryl oxazolidin-2-ones under metal-, ligand-, and solvent-free conditions. The catalyst offers excellent assemblies of hydrogen-bond donors and acceptors, which activate the substrates, thereby delivering good-to-excellent product yields with a conversion and selectivity of more than 99%. Additionally, mild reaction conditions, wide substrate scope, effortless catalytic recovery and recyclability of the catalyst up to eight consecutive cycles offer the potential for scale-up in various pharmaceutical applications.

Graphical abstract: A straightforward one-pot synthesis of bioactive N-aryl oxazolidin-2-ones via a highly efficient Fe3O4@SiO2-supported acetate-based butylimidazolium ionic liquid nanocatalyst under metal- and solvent-free conditions

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2017
Accepted
03 Jul 2017
First published
04 Jul 2017

Green Chem., 2017,19, 3801-3812

A straightforward one-pot synthesis of bioactive N-aryl oxazolidin-2-ones via a highly efficient Fe3O4@SiO2-supported acetate-based butylimidazolium ionic liquid nanocatalyst under metal- and solvent-free conditions

R. Gupta, M. Yadav, R. Gaur, G. Arora and R. K. Sharma, Green Chem., 2017, 19, 3801 DOI: 10.1039/C7GC01414G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements