[Ru(triphos)(CH3CN)3](OTf)2 as a homogeneous catalyst for the hydrogenation of biomass derived 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium†
Abstract
The complex [Ru(triphos)(CH3CN)3](OTf)2 is an effective catalyst for the hydrogenation of 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium at temperatures between 150 and 200 °C realizing up to 96% combined yields of 2,5-hexanediol and 2,5-dimethyl-tetrahydrofuran with the product distribution being sensitive to the amount of acid co-catalyst (HOTf) present. For the furan, the reaction pathway is through an acid-catalyzed hydrolysis to the dione rather than direct hydrogenation of the ring. The hydrogenation of the dione shows a first order dependence on hydrogen pressure as determined by direct hydrogen uptake rate measurements at temperature and pressure (1.38–6.90 MPa at 150 °C) and is postulated to operate through a heterolytic activation of hydrogen gas by [Ru(H)x(triphos)(Y)y]n+ (Y = solvent, water, counter ion) species formed in situ by loss and hydrogenation of the nitrile ligands. In water the catalyst is deactivated by dimerization to [Ru2(μ-OH)3(triphos)2](OTf).