Issue 24, 2017

A mechanism for the selective epimerization of the glucose mannose pair by Mo-based compounds: towards catalyst optimization

Abstract

The selective C2 epimerization of the glucose/mannose pair on a set of Mo-based catalysts was studied by means of density functional theory. The process, known as the Bilik reaction, encompasses a 1,2 C-shift of the C3 centers at the sugars. Molybdic acid was initially proposed as a catalyst in this reaction, and recent experimental studies have shown that the polyoxometalate (POM) Keggin cluster H3PMo12O40 also presents a good performance. In the present work, we propose a reaction mechanism for the epimerization on the Keggin cluster with different heteroatoms and extend it to a larger POM, H6P2Mo18O62, and the continuous α-MoO3(010) surface. We have found that in the transition state corresponding to the 1,2 C-shift the Mo center acts as an electron buffer that promotes the transformation of the aldehyde group in C1 into an alkoxy group and the C2 alkoxy into an aldehyde group. As a consequence, the activity of Mo-containing compounds can be traced back to the reducibility of the Mo center and a simple microkinetic model illustrates that this descriptor generates an activity volcano. This allows the identification of a new POM that shall be 4.7 times more active than the parent compound. We have thus shown that continuum models linking the properties of molecular cluster-like catalysts and oxide surfaces can be derived and this paves the way towards a unified theory in catalysis.

Graphical abstract: A mechanism for the selective epimerization of the glucose mannose pair by Mo-based compounds: towards catalyst optimization

Supplementary files

Article information

Article type
Paper
Submitted
04 Sep 2017
Accepted
15 Nov 2017
First published
16 Nov 2017

Green Chem., 2017,19, 5932-5939

A mechanism for the selective epimerization of the glucose mannose pair by Mo-based compounds: towards catalyst optimization

M. Rellán-Piñeiro, M. Garcia-Ratés and N. López, Green Chem., 2017, 19, 5932 DOI: 10.1039/C7GC02692G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements