Issue 10, 2017

Droplet manipulation on a structured shape memory polymer surface

Abstract

While methods for dynamic tuning of surface wettability to manipulate water droplets have been widely explored for many applications including digital microfluidics, those based on dynamically changeable surface morphology have remained challenging to achieve. In this work, we present a structured shape memory polymer (SMP) surface which shows dynamically tunable surface wettability through changeable surface morphology in order to manipulate water droplets. The structured SMP surface involves a SMP pillar array consisting of nanotextured small and large pillars which can change its morphology between permanent and temporary shapes upon thermomechanical loading. Specifically, the structured SMP surface dynamically creates a surface morphological gradient and changes its surface wettability during thermally induced shape recovery of the SMP pillar array. Different wetting characteristics of the structured SMP surface between permanent and temporary shapes are theoretically predicted and experimentally verified. Based on these measured wetting characteristics, the structured SMP surface is designed to demonstrate that the morphological difference between two shapes under a water droplet overcomes contact angle hysteresis, resulting in driving a water droplet, when combined with the thermal Marangoni effect.

Graphical abstract: Droplet manipulation on a structured shape memory polymer surface

Supplementary files

Article information

Article type
Paper
Submitted
01 Nov 2016
Accepted
06 Apr 2017
First published
20 Apr 2017

Lab Chip, 2017,17, 1793-1801

Droplet manipulation on a structured shape memory polymer surface

J. K. Park and S. Kim, Lab Chip, 2017, 17, 1793 DOI: 10.1039/C6LC01354F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements