Issue 6, 2017

Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique

Abstract

Extraction and purification of high quality RNA is a crucial initial step required for a variety of genomic assays. We report a solid phase gene extraction (SPGE) method for automated extraction, purification and reverse transcription of mRNA in a microfluidic device. This is performed using a 130 μm diameter stainless steel needle that is amino-linked to dT(15) oligonucleotides for selective hybridization of mRNA. By inserting this probe into the biological sample for only 30 seconds, mRNA is captured with high selectivity and a yield greater than 10 pg per mm of probe length. The probe is then inserted into a lab-on-a-chip device, where the bound poly-adenylated RNA is thermally released and immediately reverse transcribed for subsequent PCR amplification. The insertion of the probe into the microfluidic device is straightforward: the microchannel is formed with an elastomer (PDMS) that, when punctured, will seal around the probe. The specificity and RNA loading capacity of the probes were evaluated using conventional qPCR. This procedure was successfully used to extract, purify, and transcribe mRNA from rat glioblastoma cell spheroids in less than seven minutes. Analysis of the product confirmed that the SPGE technique selectively captures and inherently purifies high-quality mRNA directly from biological material with no need for additional pre-processing steps. Integrating this elegant sample preparation method into a complete lab-on-a-chip system will substantially enhance the speed and automation of mRNA assays for research and clinical diagnostics.

Graphical abstract: Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique

Article information

Article type
Paper
Submitted
16 Nov 2016
Accepted
15 Feb 2017
First published
24 Feb 2017

Lab Chip, 2017,17, 1128-1136

Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique

G. G. Nestorova, K. Hasenstein, N. Nguyen, M. A. DeCoster and N. D. Crews, Lab Chip, 2017, 17, 1128 DOI: 10.1039/C6LC01421F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements