Issue 14, 2017

High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip

Abstract

An optofluidic chip is demonstrated in experiments for high-resolution and multi-range particle separation through the optically-induced microscopic vibration effect, where nanoparticles are trapped in loosely overdamped optical potential wells created with combined optical and fluidic constraints. It is the first demonstration of separating single nanoparticles with diameters ranging from 60 to 100 nm with a resolution of 10 nm. Nanoparticles vibrate with an amplitude of 3–7 μm in the loosely overdamped potential wells in the microchannel. The proposed optofluidic device is capable of high-resolution particle separation at both nanoscale and microscale without reconfiguring the device. The separation of bacteria from other larger cells is accomplished using the same chip and operation conditions. The unique trapping mechanism and the superb performance in high-resolution and multi-range particle separation of the proposed optofluidic chip promise great potential for a diverse range of biomedical applications.

Graphical abstract: High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip

Supplementary files

Article information

Article type
Paper
Submitted
04 May 2017
Accepted
07 Jun 2017
First published
07 Jun 2017

Lab Chip, 2017,17, 2443-2450

High-resolution and multi-range particle separation by microscopic vibration in an optofluidic chip

Y. Z. Shi, S. Xiong, L. K. Chin, Y. Yang, J. B. Zhang, W. Ser, J. H. Wu, T. N. Chen, Z. C. Yang, Y. L. Hao, B. Liedberg, P. H. Yap, Y. Zhang and A. Q. Liu, Lab Chip, 2017, 17, 2443 DOI: 10.1039/C7LC00484B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements