Issue 22, 2017

Experimental verification of simultaneous desalting and molecular preconcentration by ion concentration polarization

Abstract

While the ion concentration polarization (ICP) phenomenon has been intensively researched for the last decade, a complete picture of ion and analyte distributions near nanoporous membranes is strongly desired, not only for fundamental nano-electrokinetic studies but also for the development of lab-on-a-chip applications. Since direct concentration measurements, using either time-consuming collection or microelectrodes, are limited due to low throughput (<nL min−1 in typical micro/nanofluidic device) and Faradaic reactions, respectively, we measured the concentration changes of prefilled solutions in individual reservoirs in this work. As a result, analytes larger than the size of nanopores were completely repelled by the ICP layer, 65% of cations were transported through the nanoporous membrane to sustain the ICP phenomenon, and the remaining anions were consumed by electrode reactions for electro-neutrality requirements. These combined effects would enable the perfect recovery of a target analyte and the removal of unnecessary salts simultaneously. Using this scenario, the novel concept of an ink recycler was also demonstrated in this work. We showed that 40% of unnecessary salt, which causes serious deterioration of inkjet heads, was removed, while the concentration of ink molecules was doubled in a single-step operation. This simultaneous desalting and molecular preconcentration mechanism would be a key operational strategy of various refinery/purification applications for drug discovery and the chemical industry, etc.

Graphical abstract: Experimental verification of simultaneous desalting and molecular preconcentration by ion concentration polarization

Supplementary files

Article information

Article type
Paper
Submitted
10 Aug 2017
Accepted
21 Sep 2017
First published
28 Sep 2017

Lab Chip, 2017,17, 3841-3850

Experimental verification of simultaneous desalting and molecular preconcentration by ion concentration polarization

W. Kim, S. Park, K. Kim and S. J. Kim, Lab Chip, 2017, 17, 3841 DOI: 10.1039/C7LC00857K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements