Issue 6, 2017

Au6S2 monolayer sheets: metallic and semiconducting polymorphs

Abstract

Gold–sulfur interfaces, including self-assembled monolayers of thiol molecules on gold surfaces, thiolate-protected gold nanoclusters, and gold sulfide complexes, have attracted intensive interest due to their promising applications in electrochemistry, bioengineering, and nanocatalysis. Herein, we predict two hitherto unreported two-dimensional (2D) Au6S2 monolayer polymorphs, named as G-Au6S2 and T-Au6S2. The global-minimum G-Au6S2 monolayer can be viewed as a series of [–S–Au–]n and [–Au4–]n chains packed together in parallel. The metastable T-Au6S2 monolayer resembles the widely studied T-MoS2 monolayer structure with each Mo atom substituted with an octahedral Au6 cluster, while the S atom is bonded with three Au atoms in a μ3 bridging mode. The G-Au6S2 monolayer is predicted to be metallic. The T-Au6S2 monolayer is predicted to be a semiconductor with a direct bandgap of 1.48 eV and high carrier mobility of 2721 cm2 V−1 s−1, ∼10 times higher than that of semiconducting H-MoS2. Moreover, the T-Au6S2 monolayer can absorb sunlight efficiently over almost the entire solar spectrum. These properties render the G- and T-Au6S2 monolayers promising materials for advanced applications in microelectronics and optoelectronics.

Graphical abstract: Au6S2 monolayer sheets: metallic and semiconducting polymorphs

Supplementary files

Article information

Article type
Communication
Submitted
22 Jun 2017
Accepted
22 Aug 2017
First published
22 Aug 2017

Mater. Horiz., 2017,4, 1085-1091

Au6S2 monolayer sheets: metallic and semiconducting polymorphs

Q. Wu, W. W. Xu, B. Qu, L. Ma, X. Niu, J. Wang and X. C. Zeng, Mater. Horiz., 2017, 4, 1085 DOI: 10.1039/C7MH00461C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements