Issue 13, 2017

Graphene nanobubbles on TiO2 for in-operando electron spectroscopy of liquid-phase chemistry

Abstract

X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Absorption Spectroscopy (XAS) provide unique knowledge on the electronic structure and chemical properties of materials. Unfortunately this information is scarce when investigating solid/liquid interfaces and chemical or photochemical reactions under ambient conditions because of the short electron inelastic mean free path (IMFP) that requires a vacuum environment, which poses serious limitation on the application of XPS and XAS to samples present in the atmosphere or in the presence of a solvent. One promising approach is the use of graphene (Gr) windows transparent to both photons and electrons. This paper proposes an innovative system based on sealed Gr nanobubbles (GNBs) on a titanium dioxide TiO2 (100) rutile single crystal filled with the solution of interest during the fabrication stage. The GNBs were successfully employed to follow in-operando the thermal-induced reduction of FeCl3 to FeCl2 in aqueous solution. The electronic states of chlorine, iron and oxygen were obtained through a combination of electron spectroscopy methods (XPS and XAS) in different phases of the process. The interaction of various components in solution with solid surfaces constituting the cell was obtained, also highlighting the formation of a covalent C–Cl bond in the Gr structure. For the easiness of GNB fabrication and straightforward extension to a large variety of solutions, we envisage a broad application of the proposed approach to investigate in detail electronic mechanisms that regulate liquid/solid electron transfer in catalytic and energy conversion related applications.

Graphical abstract: Graphene nanobubbles on TiO2 for in-operando electron spectroscopy of liquid-phase chemistry

Supplementary files

Article information

Article type
Paper
Submitted
21 Nov 2016
Accepted
24 Feb 2017
First published
27 Feb 2017

Nanoscale, 2017,9, 4456-4466

Graphene nanobubbles on TiO2 for in-operando electron spectroscopy of liquid-phase chemistry

S. Nappini, A. Matruglio, D. Naumenko, S. Dal Zilio, F. Bondino, M. Lazzarino and E. Magnano, Nanoscale, 2017, 9, 4456 DOI: 10.1039/C6NR09061C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements