Issue 8, 2017

Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation

Abstract

The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ)GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ)GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).

Graphical abstract: Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2017
Accepted
24 Jan 2017
First published
26 Jan 2017

Nanoscale, 2017,9, 2814-2823

Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation

M. Riedel, N. Sabir, F. W. Scheller, W. J. Parak and F. Lisdat, Nanoscale, 2017, 9, 2814 DOI: 10.1039/C7NR00091J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements