Issue 11, 2017

A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces

Abstract

A modified Wenzel model is proposed for describing the wetting behavior of van der Waals layered materials with topographic surfaces, based on the measured linear relationship between water wetting and surface roughness for high quality Bi2Se3 thin films, synthesized using molecular beam epitaxy (MBE) in the optimized temperature window of 180–200 °C. The water contact angles are found to have apparent dependence on the nanoscale surface morphology, enabling film wettability as a new tool to quickly characterize the quality of atomically thin films. The water contact angle of the ideal Bi2Se3 surface is inferred to be ∼98.4°, indicating its intrinsic hydrophobic nature; however, the edge of the terrace on its surface is extremely hydrophilic, leading to easy hydrophobic/hydrophilic transitions. The atomistic mechanism is further revealed by first principles calculations. The regulated wettability is of great importance for electronic applications of Bi2Se3 and other two-dimensional materials with distinctive electronic structures.

Graphical abstract: A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces

Supplementary files

Article information

Article type
Paper
Submitted
21 Jan 2017
Accepted
21 Feb 2017
First published
23 Feb 2017

Nanoscale, 2017,9, 3843-3849

A modified Wenzel model for water wetting on van der Waals layered materials with topographic surfaces

P. Zhao, Y. Huang, Y. Shen, S. Yang, L. Chen, K. Wu, H. Li and S. Meng, Nanoscale, 2017, 9, 3843 DOI: 10.1039/C7NR00521K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements