Issue 19, 2017

The role of 1-D finite size Heisenberg chains in increasing the metal to insulator transition temperature in hole rich VO2

Abstract

VO2 samples are grown with different oxygen concentrations leading to different monoclinic, M1, and triclinic, T, insulating phases which undergo a first order metal to insulator transition (MIT) followed by a structural phase transition (SPT) to the rutile tetragonal phase. The metal insulator transition temperature (Tc) was found to be increased with increasing native defects. Vanadium vacancy (VV) is envisaged to create local strains in the lattice which prevents twisting of the V–V dimers promoting metastable monoclinic, M2 and T phases at intermediate temperatures. It is argued that MIT is driven by strong electronic correlation. The low temperature insulating phase can be considered as a collection of one-dimensional (1-D) half-filled bands, which undergo a Mott transition to 1-D infinitely long Heisenberg spin ½ chains leading to structural distortion due to spin–phonon coupling. The presence of VV creates localized holes (d0) in the nearest neighbor, thereby fragmenting the spin ½ chains at the nanoscale, which in turn increases the Tc value more than that of an infinitely long one. The Tc value scales inversely with the average size of the fragmented Heisenberg spin ½ chains following a critical exponent of ⅔, which is exactly the same as predicted theoretically for the Heisenberg spin ½ chain at the nanoscale undergoing SPT (spin-Peierls transition). Thus, the observation of MIT and SPT at the same time in VO2 can be explained from our phenomenological model of reduced 1-D Heisenberg spin ½ chains. The reported increase (decrease) in the Tc value of VO2 by doping with metals having valency less (more) than four can also be understood easily with our unified model, for the first time, considering finite size scaling of Heisenberg chains.

Graphical abstract: The role of 1-D finite size Heisenberg chains in increasing the metal to insulator transition temperature in hole rich VO2

Supplementary files

Article information

Article type
Paper
Submitted
31 Jan 2017
Accepted
16 Apr 2017
First published
19 Apr 2017

Nanoscale, 2017,9, 6537-6544

The role of 1-D finite size Heisenberg chains in increasing the metal to insulator transition temperature in hole rich VO2

R. Basu, M. Sardar, S. Bera, P. Magudapathy and S. Dhara, Nanoscale, 2017, 9, 6537 DOI: 10.1039/C7NR00729A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements