Issue 18, 2017

Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: improvement on chemotherapic efficacy via sustained release and drug retention

Abstract

To realize the sustained release and long-term intratumoural retention of water-soluble cisplatin, thermo/pH-sensitive cisplatin-directed coordination-crosslinking nanogels (Pt-PNA) were developed via the coordination bonds of Pt–carboxyl groups. As the coordination ratio (CR) of the Pt–carboxyl bonds increased from 5% to 35%, the sizes of the Pt-PNA nanogels decreased from 999 nm to 167 nm, and their zeta potentials increased from −35 mV to −13 mV. Only through a simple mixing of cisplatin and PNAs, the entrapment efficiencies (EEs) of the Pt-PNA nanogels reached near 100% (>90%), and the drug-loading amounts (DLs) of cisplatin could achieve up to 25.5 ± 0.1%. For water-soluble cisplatin, Pt-PNA nanogels exhibited a sustained release for as long as 5 days. The thermo/pH-sensitive sol–gel phase-transition behaviour of the Pt-PNA nanogels were investigated via inverting-vial and rheological methods. Platinum elemental analysis indicated that the Pt-PNA nanogels showed a much stronger ability of cisplatin retention in tumours than free cisplatin. The platinum content in a tumour treated by the Pt-PNA nanogels was far higher than that by free cisplatin: 200.7 ± 63.6 μg vs. 82.7 ± 26.8 μg at the 1st day, or 118.9 ± 35.2 μg vs. 18.5 ± 9.4 μg at the 14th day. The evaluation of the in vivo antitumour efficacy indicated that only after a single dose of Pt-PNA nanogels, the tumour volume continuously decreased to 0.73 ± 0.07 times that of the original tumour volume (OTV) for 14 days; however, it rapidly increased by 3.37 ± 0.82, 8.01 ± 0.53 and 9.25 ± 1.85 times that of the OTV with the same dose of free cisplatin, PNA, and NS, respectively. Some preliminary evaluations of the biocompatibility indicated that the toxic side effects of cisplatin could be greatly improved via cisplatin-directed coordination-crosslinking with PNA. As a result, Pt-PNA nanogels could likely become a promising versatile strategy for improving antitumour efficacy and reducing the toxicity and size effects of platinum-based drugs, and they could also be developed as promising nanomedicines for regional chemotherapy.

Graphical abstract: Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: improvement on chemotherapic efficacy via sustained release and drug retention

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2017
Accepted
26 Mar 2017
First published
04 Apr 2017

Nanoscale, 2017,9, 5859-5871

Cisplatin-directed coordination-crosslinking nanogels with thermo/pH-sensitive triblock polymers: improvement on chemotherapic efficacy via sustained release and drug retention

H. Zhao, J. Xu, J. Wan, S. Geng, H. Li, X. Peng, Q. Fu, M. He, Y. Zhao and X. Yang, Nanoscale, 2017, 9, 5859 DOI: 10.1039/C7NR01097D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements