Issue 24, 2017

Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles

Abstract

Despite decades of research, wound complications remain a major cause of postoperative mortality, especially in the face of multiple comorbidities. Addressing the issue of anastomotic leakages and impaired wound healing from a new angle is of great interest with the prospect of having direct impact on patient outcome. Recently, aqueous suspensions of silica and iron oxide nanoparticles have been employed to connect biological tissue by serving as an adhesive layer eventually leading to macroscopic gluing of tissue. In this work, we explore the prospects of this effect by introducing bioactive tissue adhesives composed of nanoparticles produced via scalable and sterile flame spray pyrolysis. We investigate six different metal oxides on cytocompatibility, hemostatic activity and adhesive properties in a small intestine lap joint model. While bioglass nanoparticles show exceptionally strong procoagulant and adhesive properties, the cell membrane integrity is impaired at high particle concentrations. Interestingly, when bioglass is combined with ceria, a material that has well-documented cytoprotective effects, the resulting hybrid particles exhibit the same beneficiary effects as bioglass while featuring superior cytocompatibility. Taken together, we demonstrate highly modular synthesis of nanoparticles expressing adhesive properties in conjunction with tailored bioactivity. Such bioactive nanoparticles as adhesion nuclei in wound healing have a wide range of potential applications in surgical wound care and regenerative medicine.

Graphical abstract: Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2017
Accepted
31 May 2017
First published
05 Jun 2017

Nanoscale, 2017,9, 8418-8426

Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles

M. T. Matter, F. Starsich, M. Galli, M. Hilber, A. A. Schlegel, S. Bertazzo, S. E. Pratsinis and I. K. Herrmann, Nanoscale, 2017, 9, 8418 DOI: 10.1039/C7NR01176H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements