Issue 23, 2017

Depth-profiling of Yb3+ sensitizer ions in NaYF4 upconversion nanoparticles

Abstract

Enhancing the efficiency of upconversion nanoparticles (UCNPs) and therefore their brightness is the critical goal for this emerging material to meet growing demands in many potential applications including sensing, imaging, solar energy conversion and photonics. The distribution of the photon sensitizer and activator ions that form a network of energy transfer systems within each single UCNP is vital for understanding and optimizing their optical properties. Here we employ synchrotron-based X-ray Photoelectron Spectroscopy (XPS) to characterize the depth distribution of Yb3+ sensitizer ions in host NaYF4 nanoparticles and systematically correlate the structure with the optical properties for a range of UCNPs with different sizes and doping concentrations. We find a radial gradient distribution of Yb3+ from the core to the surface of the NaYF4 nanoparticles, regardless of their size or the sensitizer's concentration. Energy dispersive X-ray Spectroscopy (EDX) was also used to further confirm the distribution of the sensitizer ions in the host matrix. These results have profound implications for the upconversion optical property variations.

Graphical abstract: Depth-profiling of Yb3+ sensitizer ions in NaYF4 upconversion nanoparticles

Supplementary files

Article information

Article type
Communication
Submitted
28 Feb 2017
Accepted
05 May 2017
First published
08 May 2017

Nanoscale, 2017,9, 7719-7726

Depth-profiling of Yb3+ sensitizer ions in NaYF4 upconversion nanoparticles

X. Xu, C. Clarke, C. Ma, G. Casillas, M. Das, M. Guan, D. Liu, L. Wang, A. Tadich, Y. Du, C. Ton-That and D. Jin, Nanoscale, 2017, 9, 7719 DOI: 10.1039/C7NR01456B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements