Issue 26, 2017

Controlled defect creation and removal in graphene and MoS2 monolayers

Abstract

It is known that defects strongly influence the properties of two-dimensional (2D) materials. The controlled creation and removal of defects can be utilized to tailor the optical and electronic responses of these 2D materials for optoelectronic and nanoelectronic applications. In this study, we developed an efficient approach to reversibly control the defect states in mechanically exfoliated graphene and molybdenum disulfide (MoS2) monolayers. The defects were created by aluminium oxide (Al2O3) plasmas and removed by moderate thermal annealing at up to 300 °C. We employed Raman and photoluminescence (PL) as well as electrical characterization to monitor the variation of the defect level in graphene and MoS2. For graphene, Raman spectra indicate that the Al2O3 plasma induced sp3-type defects with a controlled concentration, which have been substantially removed after thermal annealing. A similar trend was also observed in monolayer MoS2, as revealed by the defect-related emission peak (Xb) in the PL spectra. We further showed that the defects induced by the Al2O3 plasma in both 2D materials can be restored to any intended level via annealing under well-controlled conditions. Our work presents a new route to the functional design of the optical and electronic properties of graphene and MoS2-based devices through defect engineering.

Graphical abstract: Controlled defect creation and removal in graphene and MoS2 monolayers

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2017
Accepted
08 Jun 2017
First published
12 Jun 2017

Nanoscale, 2017,9, 8997-9008

Controlled defect creation and removal in graphene and MoS2 monolayers

D. W. Li, Q. M. Zou, X. Huang, H. Rabiee Golgir, K. Keramatnejad, J. F. Song, Z. Y. Xiao, L. S. Fan, X. Hong, L. Jiang, J. F. Silvain, S. Sun and Y. F. Lu, Nanoscale, 2017, 9, 8997 DOI: 10.1039/C7NR01712J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements