Issue 24, 2017

Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature

Abstract

Recently, organic–inorganic lead halide perovskites have gained great attention for their breakthrough in photovoltaic and optoelectronics. However, their thermal transport properties that affect the device lifetime and stability are still rarely explored. In this work, the thermal conductivity properties of single crystal CH3NH3PbI3 platelets grown by chemical vapor deposition are studied via non-contact micro-photoluminescence (PL) spectroscopy. We developed a measurement methodology and derived expressions suitable for the thermal conductivity extraction for micro-sized perovskites. The room temperature thermal conductivity of ∼0.14 ± 0.02 W m−1 K−1 is extracted from the dependence of the PL peak energy on the excitation laser power. On changing the film thickness from 80 to 400 nm, the thermal conductivity does not show noticeable variations, indicating the minimal substrate effects due to the advantage of the suspended configuration. The ultra-low thermal conductivity of perovskites, especially thin films, suggests their promising applications for thermal isolation, such as thermal insulation and thermo-electricity.

Graphical abstract: Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2017
Accepted
16 May 2017
First published
17 May 2017

Nanoscale, 2017,9, 8281-8287

Thermal conductivity of suspended single crystal CH3NH3PbI3 platelets at room temperature

C. Shen, W. Du, Z. Wu, J. Xing, S. T. Ha, Q. Shang, W. Xu, Q. Xiong, X. Liu and Q. Zhang, Nanoscale, 2017, 9, 8281 DOI: 10.1039/C7NR01894K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements