Issue 19, 2017

Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles

Abstract

Lanthanide (Ln3+)-doped upconversion nanoparticles (UCNPs) have attracted tremendous interest owing to their potential bioapplications. However, the intrinsic photophysics responsible for upconversion (UC) especially the cooperative sensitization UC (CSU) in colloidal Ln3+-doped UCNPs has remained untouched so far. Herein, we report a unique strategy for the synthesis of high-quality LiYbF4:Ln3+ core-only and core/shell UCNPs with tunable particle sizes and shell thicknesses. Energy transfer UC from Er3+, Ho3+ and Tm3+ and CSU from Tb3+ were comprehensively surveyed under 980 nm excitation. Through surface passivation, we achieved efficient non-cooperative sensitization UC with absolute UC quantum yields (QYs) of 3.36%, 0.69% and 0.81% for Er3+, Ho3+ and Tm3+, respectively. Particularly, we for the first time quantitatively determined the CSU efficiency for Tb3+ with an absolute QY of 0.0085% under excitation at a power density of 70 W cm−2. By means of temperature-dependent steady-state and transient UC spectroscopy, we unraveled the dominant mechanisms of phonon-assisted cooperative energy transfer (T > 100 K) and sequential dimer ground-state absorption/excited-state absorption (T < 100 K) for the CSU process in LiYbF4:Tb3+ UCNPs.

Graphical abstract: Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
25 Mar 2017
Accepted
06 Apr 2017
First published
11 Apr 2017
This article is Open Access
Creative Commons BY license

Nanoscale, 2017,9, 6521-6528

Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles

Q. Zou, P. Huang, W. Zheng, W. You, R. Li, D. Tu, J. Xu and X. Chen, Nanoscale, 2017, 9, 6521 DOI: 10.1039/C7NR02124K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements