Issue 35, 2017

Artificial hagfish protein fibers with ultra-high and tunable stiffness

Abstract

Stiff fibers are used as reinforcing phases in a wide range of high-performance composite materials. Silk is one of the most widely studied bio-fibers, but alternative materials with specific advantages are also being explored. Among these, native hagfish (Eptatretus stoutii) slime thread is an attractive protein-based polymer. These threads consist of coiled-coil intermediate filaments (IFs) as nano-scale building blocks, which can be transformed into extended β-sheet-containing chains upon draw-processing, resulting in fibers with impressive mechanical performance. Here, we report artificial hagfish threads produced by recombinant protein expression, which were subsequently self-assembled into coiled-coil nanofilaments, concentrated, and processed into β-sheet-rich fibers by a “picking-up” method. These artificial fibers experienced mechanical performance enhancement during draw-processing. We exploited the lysine content to covalently cross-link the draw-processed fibers and obtained moduli values (E) in tension as high as ∼20 GPa, which is stiffer than most reported artificial proteinaceous materials.

Graphical abstract: Artificial hagfish protein fibers with ultra-high and tunable stiffness

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2017
Accepted
07 Aug 2017
First published
09 Aug 2017

Nanoscale, 2017,9, 12908-12915

Artificial hagfish protein fibers with ultra-high and tunable stiffness

J. Fu, P. A. Guerette, A. Pavesi, N. Horbelt, C. T. Lim, M. J. Harrington and A. Miserez, Nanoscale, 2017, 9, 12908 DOI: 10.1039/C7NR02527K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements