Issue 24, 2017

Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

Abstract

Colloidal metal nanocrystals find many applications in catalysis, energy conversion devices, and therapeutics. However, the nature of ligand interactions and implications on shape control have remained uncertain at the atomic scale. Large differences in peptide adsorption strength and facet specificity were found on flat palladium surfaces versus surfaces of nanoparticles of 2 to 3 nm size using accurate atomistic simulations with the Interface force field. Folding of longer peptides across many facets explains the formation of near-spherical particles with local surface disorder, in contrast to the possibility of nanostructures of higher symmetry with shorter ligands. The average particle size in TEM correlates inversely with the surface coverage with a given ligand and with the strength of ligand adsorption. The role of specific amino acids and sequence mutations on the nanoparticle size and facet composition is discussed, as well as the origin of local surface disorder that leads to large differences in catalytic reactivity.

Graphical abstract: Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

Supplementary files

Article information

Article type
Paper
Submitted
20 Apr 2017
Accepted
04 Jun 2017
First published
06 Jun 2017

Nanoscale, 2017,9, 8401-8409

Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control

H. Ramezani-Dakhel, N. M. Bedford, T. J. Woehl, M. R. Knecht, R. R. Naik and H. Heinz, Nanoscale, 2017, 9, 8401 DOI: 10.1039/C7NR02813J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements