Issue 24, 2017

Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking

Abstract

This work reported the dynamic effects of water droplet impact on flat, porous and pincushion structure films of star shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates, POSS-poly(trifluoroethyl methacrylate)8 (POSS-(PTFEMA)8) and POSS-(poly(trifluoroethyl methacrylate)-b-poly(methyl methacrylate))8 (POSS-(PTFEMA-b-PMMA)8), using the breath figure method. The porous and pincushion structure films with different surface chemical compositions were obtained by controlling the copolymer structure and temperature and by stripping of the surface. The water contact angles on the different films were measured, and the water droplets on the pincushion structure films when reversed at 45°, 90°, 135° and 180° were also studied. It was found that the pincushion structure films revealed a water adhesion ability. Furthermore, the water droplet impact behavior on these films was investigated. The morphology variations of water droplets, spreading diameter of the droplets, energy conversion, restitution coefficient and adhesion force were examined. Finally, the schematic illustration of water droplets under the static and dynamic states in contact with the pincushion and porous structure surfaces was proposed. It is critical to materialize various applications such as microdroplet transportation, soil erosion, spray painting, anti-icing surface and antifouling agents for textiles.

Graphical abstract: Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking

Supplementary files

Article information

Article type
Paper
Submitted
24 Apr 2017
Accepted
16 May 2017
First published
17 May 2017

Nanoscale, 2017,9, 8249-8255

Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking

Z. Li, Q. Kong, X. Ma, D. Zang, X. Guan and X. Ren, Nanoscale, 2017, 9, 8249 DOI: 10.1039/C7NR02906C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements