From mixed to three-layer core/shell PtCu nanoparticles: ligand-induced surface segregation to enhance electrocatalytic activity†
Abstract
Core–shell segregated bimetallic nanoparticles (NPs) exhibit increased enhanced catalytic performance compared to that of mixed bimetallic NPs. Here, we report a simple, yet efficient, one-pot synthetic strategy to synthesize uniform three-layer core/shell PtCu NPs by adding benzyl ether (BE) in the synthesis process of mixed PtCu NPs. In comparison with commercial Pt/C and also mixed PtCu NPs, the three-layer core/shell PtCu NPs exhibit superior activity in catalyzing the oxygen reduction reaction (ORR), formic acid oxidation reaction (FAOR), methanol oxidation reaction (MOR), and ethanol oxidation reaction (EOR), mainly due to the ligand (BE)-induced surface segregation of Pt on the surface of the NPs.