Issue 32, 2017

Vibrational contributions to intrinsic friction in charged transition metal dichalcogenides

Abstract

Vibrational contributions to intrinsic friction in layered transition metal dichalcogenides (TMDs) have been studied at different charge contents. We find that any deviation from charge neutrality produces complex rearrangements of atomic positions and electronic distributions, and consequent phase transitions. Upon charge injection, cell volume expansion is observed, due to charge accumulation along an axis orthogonal to the layer planes. Such accumulation is accounted for by the d3z2r2 orbital of the transition metal and it is regulated by the Pt2g,eg orbital polarization. The latter, in turn, determines the frequency of the phonon modes related to the intrinsic friction through non-trivial electro-vibrational coupling. The bond covalency and atom pair cophonicity can be exploited as a knob to control such coupling, ruling subtle charge flows through atomic orbitals hence determining vibrational frequencies at a specific charge content. The results can be exploited to finely tune vibrational contributions to intrinsic friction in TMD structures, in order to facilitate assembly and operation of nanoelectromechanical systems and, ultimately, to govern electronic charge distribution in TMD-based devices for applications beyond nanoscale tribology.

Graphical abstract: Vibrational contributions to intrinsic friction in charged transition metal dichalcogenides

Article information

Article type
Paper
Submitted
06 Jun 2017
Accepted
07 Jul 2017
First published
13 Jul 2017

Nanoscale, 2017,9, 11488-11497

Vibrational contributions to intrinsic friction in charged transition metal dichalcogenides

A. Cammarata and T. Polcar, Nanoscale, 2017, 9, 11488 DOI: 10.1039/C7NR04034B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements