Issue 39, 2017

Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns

Abstract

A simple and robust method has been developed for the generation of macroscopically ordered hexagonal arrays from the directed self-assembly (DSA) of cylinder-forming block copolymers (BCPs) based on minimal trench patterns with solvent vapor annealing. The use of minimal trench patterns allows us to probe the guided hexagonal arrays of cylindrical microdomains using grazing incidence small angle X-ray scattering (GISAXS), where the sample stage is rotated on the basis of the six-fold symmetry of a hexagonal system. It is found that the (10) planes of hexagonal arrays of cylindrical microdomains are oriented parallel to the underlying trench direction over macroscopic length scales (∼1 × 1 cm2). However, there are misorientations of the hexagonal arrays with short-range ordering. GISAXS patterns show that the hexagonal arrays on the minimal trench pattern are distorted, deviating from a perfect hexagonal lattice. This distortion has been attributed to the absence of topographic constraints in the unconfined direction on the 1-D minimal trench pattern. Also, the frustration of BCP microdomains, arising from the incommensurability between the trench pitch and natural period of the BCP at the base of the trench, influences the distortion of the hexagonal arrays.

Graphical abstract: Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2017
Accepted
19 Sep 2017
First published
19 Sep 2017

Nanoscale, 2017,9, 14888-14896

Macroscopically ordered hexagonal arrays by directed self-assembly of block copolymers with minimal topographic patterns

J. Choi, I. Gunkel, Y. Li, Z. Sun, F. Liu, H. Kim, K. R. Carter and T. P. Russell, Nanoscale, 2017, 9, 14888 DOI: 10.1039/C7NR05394K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements